Class Exercises for Session 3*

Time/Speed/Distance; Norths; LOPs; Danger Bearings

Chapters 8, 9 and 10 of the Course book

3.1 Speed, Time, Distance

a) $\mathrm{S}=6.0 \mathrm{kn} ; \quad \mathrm{D}=5.0 \mathrm{M} ; \quad$ find T : \qquad
b) $\mathrm{D}=5.3 \mathrm{M} ; \quad \mathrm{T}=53 \mathrm{~min} ; \quad$ find S : \qquad
c) $\mathrm{S}=4.2 \mathrm{kn} ; \quad \mathrm{T}=1 \mathrm{hr} 40 \mathrm{~min}$; find D : \qquad

3.2 Dead Reckoning

a) You plan a cruise from Georgina Point light, (top of Mayne Island, north opening of Active Pass), leaving at 10:00 with a speed of 6 kn on a course of $340^{\circ} \mathrm{T}$. Plot your course, and your DR at 10:45.
b) Once at this first DR , you turn to $040^{\circ} \mathrm{T}$, maintaining the same speed. Plot the new course, and DR \#2 at 11:05. What are the coordinates of this second DR?

3.3 Conversion of True to Magnetic degrees

Convert the following courses from True $\left(\mathrm{T}^{\circ}\right)$ to Magnetic $\left(\mathrm{M}^{\circ}\right)$, assuming a Variation of $\mathbf{2 0}{ }^{\circ} \mathbf{E}$.
a) $355^{\circ} \mathrm{T}$
b) $267^{\circ} \mathrm{T}$ \qquad
c) $016^{\circ} \mathrm{T}$ \qquad

3.4 Conversion of Magnetic to True degrees

Convert the following hand compass bearings from Magnetic $\left(\mathrm{M}^{\circ}\right)$ to True $\left(\mathrm{T}^{\circ}\right)$, assuming a Variation of $\mathbf{2 0}{ }^{\circ} \mathbf{E}$.
a) $237^{\circ} \mathrm{M}$
b) $119^{\circ} \mathrm{M}$
c) $353^{\circ} \mathrm{M}$

3.5 Conversion of True to Compass degrees

Convert the following courses from True (T) to Compass (C), assuming a Variation of $\mathbf{2 0}^{\circ} \mathbf{E}$, and a compass deviation as recorded in Fig. 2 p. 17 and Appendix 1, p. 101.
a) $023^{\circ} \mathrm{T}$ \qquad
b) $187^{\circ} \mathrm{T}$ \qquad
c) $017^{\circ} \mathrm{T}$ \qquad

3.6 Conversion of Compass to True degrees

Convert the following courses from Compass (C°) to True (T°), assuming a Variation of $\mathbf{2 0}^{\circ} \mathbf{E}$, and a compass deviation as recorded in Fig. 2.
a) $013^{\circ} \mathrm{C}$ \qquad
b) $187^{\circ} \mathrm{C}$ \qquad
c) $353^{\circ} \mathrm{C}$ \qquad

3.7 Calculating the Magnetic Variation

Calculate V knowing T and M . Indicate "E" or "W".
T V M
a) $057 \quad 040$
b) 225
c) 290 \qquad 270

3.8 Calculating the Compass Deviation

Calculate D knowing M and C . Indicate "E" or "W".

M D C
a) $015 \quad 012$
b) $255 \quad 250$
c) 318 \qquad 320

COMPASS DEVIATION TABLE

Magnetic heading	Compass deviation	Compass heading
000	$6^{\circ} \mathrm{W}$	006
010	$6^{\circ} \mathrm{W}$	016
020	$6^{\circ} \mathrm{W}$	026
030	$5^{\circ} \mathrm{W}$	035
040	$5^{\circ} \mathrm{W}$	045
050	$4^{\circ} \mathrm{W}$	054
060	$4^{\circ} \mathrm{W}$	064
070	$3^{\circ} \mathrm{W}$	073
080	$2^{\circ} \mathrm{W}$	082
090	$1^{\circ} \mathrm{W}$	091
100	0°	100
110	$2^{\circ} \mathrm{E}$	108
120	$3^{\circ} \mathrm{E}$	117
130	$3^{\circ} \mathrm{E}$	127
140	$4^{\circ} \mathrm{E}$	136
150	$4^{\circ} \mathrm{E}$	146
160	$5^{\circ} \mathrm{E}$	155
170	$5^{\circ} \mathrm{E}$	165
180	$5^{\circ} \mathrm{E}$	175
190	$5^{\circ} \mathrm{E}$	185
200	$4^{\circ} \mathrm{E}$	196
210	$4^{\circ} \mathrm{E}$	206
220	$3^{\circ} \mathrm{E}$	217
230	$2^{\circ} \mathrm{E}$	228
240	$1^{\circ} \mathrm{W}$	241
250	$3^{\circ} \mathrm{W}$	253
260	$3^{\circ} \mathrm{W}$	263
270	$4^{\circ} \mathrm{W}$	274
280	$4^{\circ} \mathrm{W}$	284
290	$5^{\circ} \mathrm{W}$	295
300	$5^{\circ} \mathrm{W}$	305
310	$5^{\circ} \mathrm{W}$	315
320	$6^{\circ} \mathrm{W}$	326
330	$6^{\circ} \mathrm{W}$	336
340	$6^{\circ} \mathrm{W}$	346
350	$6^{\circ} \mathrm{W}$	356

Fig. 2 Table for 3.6 (Reproduced from Appendix 1, p. 101).

3.9 Plotting of fix (1)

Using the graphic representation of a chart, with a lighthouse and a water tower
(Fig. 3), plot your position from two sights at 11:15 with a hand bearing compass:
$282^{\circ} \mathrm{M}$ on the lighthouse, and $214^{\circ} \mathrm{M}$ on the water tower. The magnetic variation $\mathbf{V}=\mathbf{2 0}{ }^{\circ} \mathbf{E}$. Label the graphic.

3.10 Plotting of fix (2)

Back to the chart for South Georgia Strait. While on a passage from Nanaimo to the Sand Heads light (SW of Vancouver Airport, at the end of the jetty), you record the following bearings at 08:25 and fix your position. Use $\mathbf{V}=\mathbf{2 0}^{\circ} \mathbf{E}$.

Entrance Is. light	$095^{\circ} \mathrm{M}$
Hudson Rocks light	$227^{\circ} \mathrm{M}$
Snake Is. light	$160^{\circ} \mathrm{M}$

Plot your 08:25 fix on the chart for South Georgia Strait.

3.11 Plotting of fix (3)

On a cruise out of Nanaimo, you note that, at 10:00, the Nanaimo Bridge is just visible through the gap between Newcastle and Protection Islands. You also see, on your hand bearing compass, the RHE of Gabriola Island at $\mathbf{1 4 8}{ }^{\circ} \mathbf{M}\left(V=2 \mathbf{0}^{\circ} \mathbf{E}\right)$. What is the type of aid to navigation 200 m to the NW of your boat?

3.12 Plotting of fix (4)

Position from a sight on a landmark and a depth contour line:
Sight on Point Atkinson light:
$\mathbf{0 2 5} \mathbf{M}$ at 08:00
Depth: $\quad \mathbf{1 0 0} \mathbf{m}$
Position of the Boat? (Use $\mathbf{V}=\mathbf{2 0}{ }^{\circ} \mathbf{E}$)

3.13 Danger bearings

Plan your safe entrance into Silva Bay, using the attached detailed chart for the area (Fig. 4). From a position ENE of Bath Island (right edge of the chart), you want to enter Silva Bay. Plot the NLT and NMT danger bearing lines which will ensure at least 5 m of depth N of Bath Island, and S of Acorn Island including its adjacent shallows to the east. Give the limiting angles (danger bearings) in degrees M (assume $\mathbf{V}=\mathbf{2 0}{ }^{\circ} \mathbf{E}$). Using your hand bearing compass, take your sights on the green light (FLG) at the entrance of Silva Bay.

Fig. 3 Blank Mercator chart for 3.9.

