13. TIDES

Water levels vary in tidal and non-tidal waters: sailors should be aware that the depths shown on the charts do not always represent the actual amount of water under the boat.

13.1 Tidal waters

In **tidal waters**, tides are caused by the relative pull of the gravity of the Moon (70%) and of the Sun (30%). When the Sun and Moon are in line with the Earth, either on the same side (New Moon) or opposite sides (Full Moon), the effect of their gravity is maximum, and the tides are highest; these are called **Spring** tides. When the Moon and Sun are at right angles, i.e. at the time of the first or last Quarter Moon, the effects on the tides are minimal; these are **Neap** tides. Tides are also affected, to a much lesser degree, by wind and barometric pressure.

Stronger tide currents are naturally associated with Spring tides. The inside of the back cover of the *Canadian Tide and Current Tables*, published annually by Fisheries and Oceans Canada, shows the days of each month when the Moon is full or new, or at first or last quarter. This helps in planning passages through narrow areas where tide currents can be dangerous.

The daily rotation of the Earth translates into typically semi-diurnal tides: two high tides, and two low tides per interval of 24 hours. The time interval between a high (low) tide and the next high (low) tide is slightly more than 12 hours (close to 12.5 hours) because the Moon orbits around the Earth towards the East, in the same direction as the Earth's spin, so that it takes a little more than a full spin of the Earth for a point on Earth to return under the Moon again. The usual time elapsed between a high tide and the following low tide, or vice-versa, is typically a little more then six hours.

By definition, high tides alternate with low tides, although the difference in heights can be barely noticeable. The usual two high tides, each day, have different heights: one is a **High water**, the other is a **Higher high water**. There are usually also two low tides: one is a **Low water**, the other is a **Lower low water**. This concept is important to understand how to use the reference levels for measuring depths and tide heights, as well as the reference levels used for measuring elevations above water.

Tides are measured above a plane of reference called the **vertical datum**. In Canada, it is the **lowest normal low water**. This is the same as saying the **lowest normal lower water**. The use of this reference level means that all depths marked on the chart, also counted from the same vertical datum, are normally the minimum depths which a boat might expect: any tide, even a small low tide, will add to the amount of water depth shown on the chart. However, the datum is set on the lowest **normal** tides. Once in a few years, an abnormally low tide will occur, which might be very slightly lower than the datum. At that time, the tide is negative, and the actual amount of water below the keel will be a little less than the depth shown on the charts.

In the US, the vertical datum is set at the **Mean lower low water**. Each month, many low tides are negative, during which a boat has less water under its keel than that shown on the chart.

The calculations of tide levels under various circumstances are conducted from tables contained in the *Canadian Tide and Current Tables* and are described in this chapter.

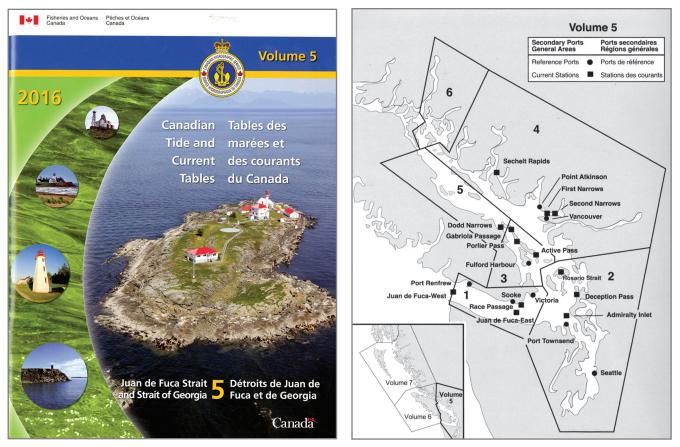


Fig.13.1 Volume 5 of the Canadian Tide and Current Tables describes the tides and the currents along the West Coast.

13.2 Non-tidal waters

In **non-tidal waters**, for instance lakes and rivers, the depth is not always indicated on the chart. On lakes, the level is directly related to the precipitation and thus usually varies with the seasons. The depth around large lakes can also be affected by wind. River depths are affected by precipitation and by the movements of muddy bottoms.

13.3 Canadian Tide and Current Tables

While there are numerous electronic resources for tides and currents, it is important to understand how to use the official printed documents.

The *Canadian Tide and Current Tables* are published annually, and describe the tides and the currents along the Canadian shores. Volumes 1, 2 and 3 cover the East Coast; and Volume 4 the Arctic.

The tides and currents of Georgia and Juan de Fuca Straits are described in Volume 5 of the *Canadian Tide and Current Tables* (Fig. 13.1, left). Those around Vancouver Island and further north are given in Volume 6; and the tides and currents in the Queen Charlotte area are forecast in Volume 7 (Fig. 13.1, right).

Canadian Tide and Current Tables Table des matières Contents 9 Introduction 5 Introduction Tables de marées Tide Tables 14 Port Renfrew 14 Port Renfrew 18 Sooke (tables and graphs) 18 Sooke (tables et graphiques) 28 Victoria (tables et graphiques) 28 Victoria (tables and graphs) Port Townsend 38 Port Townsend 38 42 Seattle Seattle 42 46 Fulford Harbour 46 Fulford Harbour 50 Vancouver 50 Vancouver Point Atkinson 54 Point Atkinson 54 Tables des courants Current Tables 58 Juan de Fuca - West 58 Juan de Fuca - West 62 Juan de Fuca - East 62 Juan de Fuca - East 66 Race Passage 66 Race Passage 70 Admiralty Inlet 70 Admiralty Inlet Rosario Strait 74 Rosario Strait 74 78 78 **Deception Pass Deception Pass** 82 Active Pass 82 Active Pass 86 Porlier Pass 86 Porlier Pass Gabriola Passage 90 Gabriola Passage 90 94 Dodd Narrows 94 Dodd Narrows 98 First Narrows 98 First Narrows 102 Second Narrows 102 Second Narrows Sechelt Rapids 106 Sechelt Rapids 106 Prediction of Tides at Secondary Ports 111 Prédiction des marées aux ports secondaires 119 121 Calculation of Intermediate Times or Heights 113 Calcul des hauteurs ou des heures intermédiaires 116 Cacul des courants aux stations secondaires des courants 124 Calculation of Currents at Secondary Current Stations 117 125 Publications Publications 126 **Canadian Supplementary Predictions** 118 Prédictions supplémentaires canadiennes 127 128 Explication des tables Explanation of the Tables Reference Ports (Tables 1 and 2) 129 Ports de référence (Tables 1 et 2) 129 Secondary Ports (Table 3) 130 Ports secondaires (Table 3) 130 Reference and Secondary Current Stations (Table 4) Stations de référence et secondaires des courants (Table 4) 135 135 Fleuve Fraser (Tables 6 et 6A) 136 Fraser River (Tables 6 and 6A) 136 Conversion Table - Metres to Feet 138 Table de conversion - Mètres et Pieds 138 Typical Tidal Curves 139 Courbes typiques des marées 139 140 Index 140 Index

These tables are published under the authority of the Canadian Hydrographic Service.

Ces tables sont publiées avec l'authorisation du Service hydrographique du Canada.

3

Fig.13.2 The two main sections of the Canadian Tide and Current Tables (2016) are the "Tide Tables" (pages 14 to 57) and the "Current Tables" (pages 58 to 109).

The inside front cover of the *Canadian Tide and Current Tables* shows the location of the **Reference Ports** where the **High and Low tides** are predicted for each day of the year (Fig. 13.1, right). The reference ports are shown with round black dots. For instance, the reference port for the Gulf Islands is Fulford Harbour. The reference ports are listed in the table of contents (Fig. 13.2, top, "Tide Tables").

The inside front cover also shows the **Current Stations** where the current is forecast (Fig. 13.1, right). The data include the speed and times of **maximum currents**, and the times of the **turns**, when the speed of the current is very low or nil, i.e. the current is "light and variable" (Fig. 14.1, p. 100). The current stations are shown as black squares; they are along frequently-used passes (Fig. 13.1, right). The current stations are listed in the table of contents (Fig. 13.2, middle, "Current Tables").

TAB	LE D	ES M	ARÉ	ES							20	16			FU	LF	ORI	D H.	ARI	BOU	JR	HN	P Z+8
		the second day of the	April		ril						May		ni						June	-jui	n		
Day	Time		s Feet	jour	heure			Day				jour	heure		s pieds	Day	Time		s Feet	jour	heure	mètre	s pieds
1 FR VE	0055 0656 0934 1729	3.0 2.5 2.6 1.1	9.8 8.2 8.5 3.6	16 SA SA	0138 0811 1242 1852	3.2 2.0 2.4 1.4	10.5 6.6 7.9 4.6	1 SU DI	0039 0720 1106 1742	3.2 2.1 2.3 1.2	10.5 6.9 7.5 3.9	16 мо LU	0010	3.1 1.5 2.3 1.9	10.2 4.9 7.5 6.2	1 WE ME	0052 0756 1443 1909	3.2 1.1 2.5 2.0	10.5 3.6 8.2 6.6	16 TH JE	0058 0835 1628 2012	3.0 1.0 2.7 2.5	9.8 3.3 8.9 8.2
2 SA SA	0144 0749 1108 1832	3.1 2.4 2.5 1.1	10.2 7.9 8.2 3.6	17 SU DI	0218 0850 1409 1949	3.1 1.8 2.4 1.5	10.2 5.9 7.9 4.9	2 MO LU	0118 0752 1252 1846	3.2 1.8 2.4 1.4	10.5 5.9 7.9 4.6	17 TU MA		3.0 1.3 2.5 2.0	9.8 4.3 8.2 6.6	2 TH JE	0125 0835 1555 2011	3.3 0.8 2.8 2.2	10.8 2.6 9.2 7.2	17 FR VE	0128 0905 1709 2110	3.0 0.8 2.9 2.6	9.8 2.6 9.5 8.5
3 SU DI	0224 0822 1240 1931	3.1 2.2 2.6 1.1	10.2 7.2 8.5 3.6	18 MO LU	0252 0921 1517 2039	3.1 1.6 2.5 1.6	10.2 5.2 8.2 5.2	3 TU MA	0153 0825 1422 1945	3.2 1.5 2.5 1.5	10.5 4.9 8.2 4.9	18 WE ME		3.0 1.1 2.7 2.2	9.8 3.6 8.9 7.2	3 FR VE	0159 0916 1655 2112	3.3 0.5 3.0 2.4	10.8 1.6 9.8 7.9	18 SA SA	0158 0936 1746 2203	3.0 0.7 3.0 2.7	9.8 2.3 9.8 8.9
4 MO LU	0259 0854 1401 2024	3.1 2.0 2.7 1.1	10.2 6.6 8.9 3.6	19 TU MA	0319 0949 1612 2124	3.0 1.4 2.7 1.8	9.8 4.6 8.9 5.9	4 WE ME	0224 0901 1536 2040	3.2 1.2 2.7 1.7	10.5 3.9 8.9 5.6	19 TH JE	0232 0940 1710 2140	3.0 1.0 2.8 2.3	9.8 3.3 9.2 7.5	4 SA SA	0237 0957 1749 2213	3.3 0.2 3.2 2.5	10.8 0.7 10.5 8.2	19 SU DI	0230 1007 1820 2251	3.0 0.6 3.1 2.7	9.8 2.0 10.2 8.9
5 TU MA	0329 0927 1514 2112	3.1 1.7 2.8 1.2	10.2 5.6 9.2 3.9	20 WE ME	0342 1014 1659 2206	3.0 1.3 2.8 1.9	9.8 4.3 9.2 6.2	5 TH JE	0255 0939 1641 2133	3.2 0.8 2.9 2.0	10.5 2.6 9.5 6.6	20 FR VE	0256 1007 1750 2227	2.9 0.8 3.0 2.4	9.5 2.6 9.8 7.9	5 SU DI	0317 1041 1839 2316	3.3 0.1 3.3 2.6	10.8 0.3 10.8 8.5	20 MO LU	0303 1040 1854 2336	3.0 0.5 3.2 2.7	9.8 1.6 10.5 8.9
6 WE ME	0358 1003 1620 2159	3.2 1.4 2.9 1.4	10.5 4.6 9.5 4.6	21 TH JE	0403 1040 1743 2247	2.9 1.1 2.9 2.1	9.5 3.6 9.5 6.9	6 FR VE	0327 1019 1740 2227	3.2 0.5 3.1 2.2	10.5 1.6 10.2 7.2	21 SA SA	0321 1035 1829 2313	2.9 0.7 3.1 2.5	9.5 2.3 10.2 8.2	6 MO LU	0401 1125 1928	3.2 0.1 3.4	10.5 0.3 11.2	21 TU MA	0337 1114 1927	3.0 0.4 3.2	9.8 1.3 10.5
7 TH JE	0427 1043 1723 2247	3.2 1.1 3.0 1.6	10.5 3.6 9.8 5.2	22 FR VE	0424 1107 1825 2328	2.9 1.0 3.0 2.2	9.5 3.3 9.8 7.2	7 SA SA	0401 1101 1838 2324	3.3 0.3 3.2 2.3	10.8 1.0 10.5 7.5	22 SU DI	0347 1105 1907 2359	2.9 0.6 3.1 2.6	9.5 2.0 10.2 8.5	7 TU MA	0023 0446 1211 2014	2.6 3.1 0.2 3.4	8.5 10.2 0.7 11.2	22 WE ME	0021 0414 1150 2001	2.7 2.9 0.4 3.3	8.9 9.5 1.3 10.8
8 FR VE	0457 1127 1825 2336	3.3 0.8 3.1 1.9	10.8 2.6 10.2 6.2	23 SA SA	0446 1136 1907	2.9 0.9 3.0	9.5 3.0 9.8	8 SU DI	0438 1146 1934	3.2 0.2 3.3	10.5 0.7 10.8	23 MO LU	0413 1137 1946	2.9 0.5 3.2	9.5 1.6 10.5	8 WE ME	0133 0535 1256 2059	2.5 2.9 0.4 3.4	8.2 9.5 1.3 11.2		0110 0456 1228 2034	2.6 2.9 0.5 3.3	8.5 9.5 1.6 10.8
9 SA SA	0529 1213 1928	3.3 0.6 3.2	10.8 2.0 10.5	24 SU DI	0010 0508 1207 1952	2.3 2.9 0.8 3.1	7.5 9.5 2.6 10.2		0027 0518 1233 2030	2.5 3.1 0.2 3.4	8.2 10.2 0.7 11.2	24 TU MA	0048 0442 1211 2025	2.6 2.9 0.5 3.2	8.5 9.5 1.6 10.5		0247 0626 1341 2142	2.4 2.7 0.6 3.4	7.9 8.9 2.0 11.2		0205 0544 1308 2108	2.5 2.7 0.6 3.3	8.2 8.9 2.0 10.8
SU	0031 0604 1301 2034	2.1 3.2 0.5 3.2	6.9 10.5 1.6 10.5		0055 0531 1240 2038	2.4 2.8 0.7 3.1	7.9 9.2 2.3 10.2		0139 0602 1321 2125	2.5 3.0 0.4 3.4	8.2 9.8 1.3 11.2	25 WE ME	0143 0512 1248 2105	2.6 2.8 0.5 3.3	8.5 9.2 1.6 10.8	10 FR VE	0400 0727 1425 2222	2.2 2.4 0.9 3.3	7.2 7.9 3.0 10.8	25 SA SA	0305 0642 1351 2142	2.3 2.6 0.8 3.3	7.5 8.5 2.6 10.8
MO	0133 0643 1352 2141	2.3 3.1 0.5 3.2	7.5 10.2 1.6 10.5	26 TU MA	0147 0555 1316 2127	2.5 2.8 0.7 3.1	8.2 9.2 2.3 10.2	11 WE ME	0301 0649 1411 2219	2.5 2.8 0.6 3.4	8.2 9.2 2.0 11.2	26 TH JE	0245 0548 1328 2145	2.6 2.7 0.6 3.3	8.5 8.9 2.0 10.8	11 SA SA	0509 0847 1511 2258	2.0 2.2 1.2 3.3	6.6 7.2 3.9 10.8	26 SU DI	0405 0758 1437 2216	2.1 2.4 1.1 3.3	6.9 7.9 3.6 10.8
TU	0249 0725 1445 2248	2.4 2.9 0.6 3.2	7.9 9.5 2.0 10.5	27 WE ME	0250 0620 1357 2217	2.5 2.7 0.8 3.1	8.2 8.9 2.6 10.2	12 TH JE	0428 0746 1502 2309	2.3 2.5 0.8 3.3	7.5 8.2 2.6 10.8	27 FR VE	0353 0635 1413 2226	2.5 2.5 0.8 3.3	8.2 8.2 2.6 10.8		0607 1037 1559 2331	1.8 2.1 1.6 3.2	5.9 6.9 5.2 10.5	MO	0502 0940 1527 2251	1.8 2.2 1.4 3.3	5.9 7.2 4.6 10.8
WE	0422 0815 1542 2352	2.5 2.7 0.8 3.2	8.2 8.9 2.6 10.5	28 TH JE	0410 0652 1443 2307	2.5 2.6 0.8 3.2	8.2 8.5 2.6 10.5	FR	0550 0902 1556 2355	2.2 2.3 1.1 3.3	7.2 7.5 3.6 10.8	28 SA SA	0459 0742 1502 2305	2.3 2.4 0.9 3.3	7.5 7.9 3.0 10.8	13 MO LU	0653 1240 1654	1.6 2.2 1.9	5.2 7.2 6.2	TU	0554 1138 1625 2325	1.5 2.3 1.7 3.3	4.9 7.5 5.6 10.8
1.4	0601 0922 1644	2.4 2.5 1.0	7.9 8.2 3.3	FR	0539 0743 1536 2355	2.4 2.5 1.0 3.2	7.9 8.2 3.3 10.5		0654 1052 1654	1.9 2.2 1.4	6.2 7.2 4.6	SU	0553 0920 1557 2343	2.1 2.2 1.2 3.3	6.9 7.2 3.9 10.8	TU	0001 0731 1425 1759	3.1 1.4 2.3 2.1	10.2 4.6 7.5 6.9		0642 1331 1732	1.2 2.4 2.1	3.9 7.9 6.9
FR	0049 0719 1056 1749	3.2 2.2 2.4 1.2	10.5 7.2 7.9 3.9	30 SA SA	0641 0914 1636	2.3 2.3 1.1	7.5 7.5 3.6	SU	0036 0740 1250 1757	3.2 1.7 2.2 1.6	10.5 5.6 7.2 5.2	30 MO LU	0638 1118 1659	1.8 2.2 1.4	5.9 7.2 4.6	WE	0030 0804 1537 1907	3.0 1.2 2.5 2.3	9.8 3.9 8.2 7.5	TH	0000 0728 1459 1844	3.3 0.8 2.7 2.3	10.8 2.6 8.9 7.5
												31 TU MA	0018 0717 1312 1804	3.2 1.5 2.3 1.7	10.5 4.9 7.5 5.6								

The individual tables towards the end of the manual allow the calculation of intermediate tides, and currents at secondary stations (Fig. 13.2, bottom).

13.4 Full tides at main reference ports

The Tide Tables, in the first part of the manual, give the High and Low tides for each day of the year. High and Low tides alternate, even if the height differences are minimal. Some High tides can be lower than some Low tides, and vice versa.

In the Tides section, each page represents three months of tides for a given station (Fig. 13.3). The times and amplitudes of high and low tides are given for each day in **Pacific Standard Time** because the document is issued by the federal government. The local times, in B.C., are set by the Provincial Government, and advanced by one hour during the **summer** months, between early March and early November as **Pacific Daylight Time** (PDT).

Fig. 13.3 The 2016 Tide for Fulford Harbour, April-June.

Example: What are the tides on Monday (Lundi) April 4 at Fulford Harbour, in local time?

The tides in Fulford Harbour, on April 4, 2016, can be described as follows (Fig. 13.3 and Fig. 13.6):

Time (PDT)	Height	Туре
03:59	3.1 m	High
09:54	2.0 m	Low
15:01	2.7 m	High
21:24	1.1 m	Low

13.5 Intermediate tides, main ports

The changes in water levels caused by the tides look like the oscillations and beating of two sine waves with very slightly different periods. These oscillations are caused in part by the Sun, but mostly by the slightly shorter period of the Moon in its apparent rotation around the Earth, and its wandering north or south of the equator. Most of the time, however, the tide pattern looks like a sine wave, and the various approximations used to interpolate the water levels between peaks are based on the properties of sine waves.

The daily tide patterns on the West Coast, as can be seen in the sample eight stations (Fig. 13.4), are governed by the relative position of the Moon: it can be over the equator (**E** points), at its northern maximum latitude (**N**) or at its southern most latitude (**S**). The amplitudes tend to be highest during the full moons (\bigcirc).

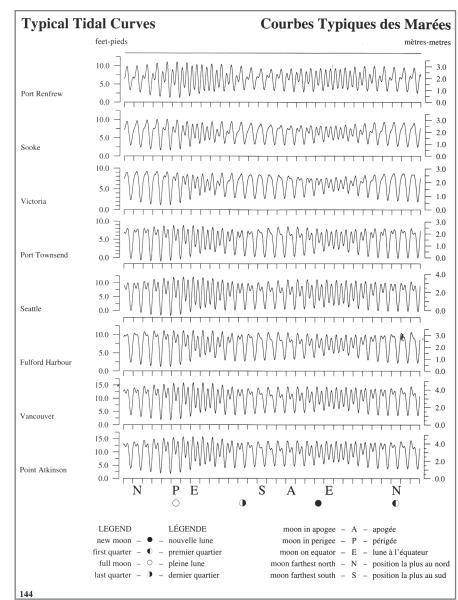


Fig.13.4 The effect of the Moon on BC tides.

The *Canadian Tide and Current Tables* provide data which allow the interpolation of water levels between Low and High tides for a specific moment. These are given in Tables 5 and 5A on page 114 of Volume 5 for Southern BC, 2016 (Fig. 13.7, p. 90). They are based on: 1) the **Tide Duration**, i.e. the time between adjacent Low and High tides, equivalent to half the period of a pure sine wave; 2) the **Tide Range**, i.e. the difference in water levels between adjacent Low and High tides, equivalent to the amplitude of a pure sine wave; and 3) the **Time Interval**, i.e. the difference in time between the moment of measurement and the time of the nearest Low or High tide. These terms, used in Tables 5 and 5A, are illustrated in the graph of Fig. 13.5.

These same tables, and the graphs of the tides associated with them, are available from the Web in .pdf and other electronic formats.

For a tide of specific characteristics (Tide Duration and Tide Range), Tables 5 and 5A of the *Canadian Tide and Current Tables* thus allow an estimate of the **Height Difference**, i.e. the change of water level from the nearest High or Low to the level at the moment of measurement (Fig. 13.5).

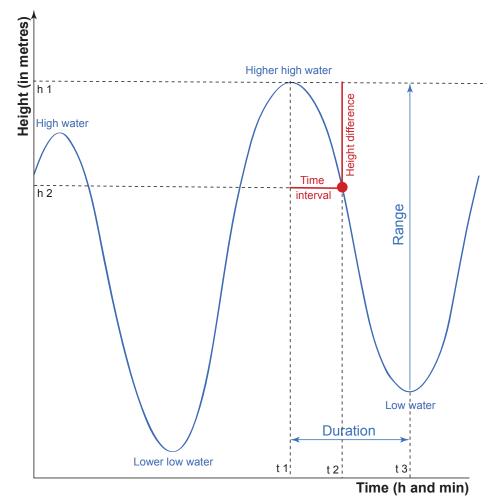


Fig.13.5 In most cases, stations on the West Coast report two high tides per day, a **High** and a **Higher high**, and two low tides: a **Low** and a **Lower low**.

001

Naturally, Tables 5 and 5A (Fig. 13.7, p. 90) also allow the resolution of the inverse problem: for a specific tide of known duration and range, when would the water level reach a required level, i.e. when would the level be at a specific height difference above the nearest Low or below the nearest High.

Examples of the two types of problems are given in the following sections.

13.5.1 Calculation of the tide at a given time

We may need to know how much water we have under the boat at a given time. The following example explains the method:

Example: What is the intermediate tide at Fulford Harbour at 17:30 (PDT) on April 4, 2016 (Fig. 13.6):

- Tide Duration between the adjacent High and Low:
 21:24 (Low) 15:01 (High) = 6 h 23 min
- Tide Range: 2.7 1.1 = 1.6 m
- Time Interval between the moment of measurement (17:30) and the time of the nearest High or Low:
 17:30 15:01 = 2 h 29 min after the High at 15:01.

With this information, we look at Table 5 (Fig. 13.7), in the left section with the times (**Time intervals** and **Duration**): Since our tide has a duration of 6 h 23 min, we select **6:20** down the Duration column. And since our time interval is 2 h 29 min, we move horizontally to the column with the closest time interval of **2:33**. We end up in **column G**.

We now continue in Table 5A (Fig. 13.7), to the right of Table 5. Down the **Range** column, we select the row for 1.5 m, the closest choice for our tide range of 1.6 m. Moving horizontally to the column with the same name as in Table 5, column G, we read a height difference of 0.55 m.

FULFORD HARBOUR	2016
Anril-avril	

		H	hu	-avi	11				
Day	Time	Metres	Feet	jour	heure	mètres	s pieds	Day	Time
1 FR VE	0055 0656 0934 1729	3.0 2.5 2.6 1.1	9.8 8.2 8.5 3.6	16 SA SA	0138 0811 1242 1852	3.2 2.0 2.4 1.4	10.5 6.6 7.9 4.6	1 SU DI	0039 0720 1106 1742
2 SA SA	0144 0749 1108 1832	3.1 2.4 2.5 1.1	10.2 7.9 8.2 3.6	17 SU DI	0218 0850 1409 1949	3.1 1.8 2.4 1.5	10.2 5.9 7.9 4.9	2 MO LU	0118 0752 1252 1846
3 SU DI	0224 0822 1240 1931	3.1 2.2 2.6 1.1	10.2 7.2 8.5 3.6	18 MO LU	0252 0921 1517 2039	3.1 1.6 2.5 1.6	10.2 5.2 8.2 5.2	3 TU MA	0153 0825 1422 1945
4 мо LU	0259 0854 1401 2024	3.1 2.0 2.7 1.1	10.2 6.6 8.9 3.6	19 TU MA	0319 0949 1612 2124	3.0 1.4 2.7 1.8	9.8 4.6 8.9 5.9	4 WE ME	0224 0901 1536 2040
5 TU MA	0329 0927 1514 2112	3.1 1.7 2.8 1.2	10.2 5.6 9.2 3.9	20 WE ME	0342 1014 1659 2206	3.0 1.3 2.8 1.9	9.8 4.3 9.2 6.2	5 TH JE	0255 0939 1641 2133
6 WE ME	0358 1003 1620 2159	3.2 1.4 2.9 1.4	10.5 4.6 9.5 4.6	21 TH JE	0403 1040 1743 2247	2.9 1.1 2.9 2.1	9.5 3.6 9.5 6.9	6 FR VE	0327 1019 1740 2227
7 TH JE	0427 1043 1723 2247	3.2 1.1 3.0 1.6	10.5 3.6 9.8 5.2	22 FR VE	0424 1107 1825 2328	2.9 1.0 3.0 2.2	9.5 3.3 9.8 7.2	7 SA SA	0401 1101 1838 2324

Fig. 13.6 Tides at Fulford Harbour on April 4, 2016.

This means that, at 17:30, the tide will be 0.55 m above or below

the level of the reference tide. Our reference tide, which is the closest to the moment of measurement, is the High tide at 15:01. The tide at 17:30 is therefore 0.55 m below this High tide of 2.7 m. At 17:30, the tide level is thus 2.7 - 0.55 = 2.15 m above the vertical datum, or 2.2 m after rounding off.

TABLE 5: TIME INTERVALS	TABLE 5A: HEIGHT DIFFERENCES
Duration A B* C D E F G H I J	Range A B* C D E F G H I J
hm	mmmmmmmmmm
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3 .00 .05 .05 .05 .10 .10 .10 .10 .15 .15 0.5 .05 .05 .10 .10 .15 .20 .21 .25 .25 .30 0.9 .05 .10 .15 .20 .25 .25 .30 .35 .40 .45 1.2 .05 .10 .20 .25 .30 .35 .40 .50 .55 .60 1.5 .10 .15 .25 .30 .40 .55 .60 .70 .75
200 17 25 30 35 40 44 48 52 56 100 210 19 27 33 38 43 48 52 57 101 105 220 20 29 35 41 47 52 56 101 106 110 230 22 31 38 44 50 55 100 105 110 115 240 23 33 41 47 53 59 104 10 115 120 240 23 33 44 50 55 100 105 120 240 23 33 41 47 53 59 104 10 115 120 250 24 35 43 50 57 103 109 114 120 125	1.8 .10 .20 .25 .35 .45 .55 .65 .70 .80 .90 2.1 .10 .20 .30 .40 .55 .65 .75 .85 .95 1.05 2.4 .10 .25 .35 .50 .60 .70 .85 .95 1.10 1.20 2.7 .15 .25 .40 .55 .70 .80 .95 1.10 1.20 3.0 .15 .30 .45 .60 .75 .90 1.05 1.20 1.35
3 00 26 37 46 53 1 00 1 13 1 18 1 24 1 30 3 10 27 39 48 56 1 03 1 1 17 1 23 1 29 1 35 3 20 29 41 51 59 1 07 1 4 1 21 1 27 1 34 1 40 330 30 43 53 1 02 1 1 17 1 22 1 38 1 45 340 32 43 53 1 02 1 1 1 1 2 1 38 1 45 340 32 45 56 1 05 1 1 21 1 29 1 36 1 43 1 50	3.3 .15 .35 .50 .65 .85 1.00 1.15 1.30 1.65 3.6 .20 .35 .55 .70 .90 1.10 1.25 1.45 1.60 1.80 3.9 .20 .40 .60 .80 1.00 1.15 1.35 1.55 1.75 1.95 4.2 * .20 .40 .65 .85 1.05 1.25 1.45 1.60 1.95 4.2 * .20 .40* .65 .85 1.05 1.25 1.45 1.70 1.90 2.10 4.5 .25 .45 .70 .90 1.10 1.35 1.55 1.80 2.00 2.25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.8 .25 .50 .70 .95 1.20 1.45 1.70 1.90 2.15 2.40 5.1 .25 .50 .75 1.00 1.25 1.55 1.80 2.05 2.30 2.55 5.4 .25 .55 .80 1.10 1.35 1.60 1.90 2.15 2.45 2.70 5.7 .30 .55 .85 1.15 1.40 1.70 2.00 2.30 2.55 2.85 6.0 .30 .60 .90 1.20 1.50 1.80 2.10 2.40 2.70 3.00
450 42 59 111 126 137 147 157 206 216 225 500 43 101 116 129 140 151 201 211 220 230 510 45 103 118 132 143 154 205 215 225 235 520 46 106 121 134 147 158 209 219 230 240 530 47 108 124 137 150 202 213 224 234 245 540 49 100 126 140 153 205 217 228 239 250	6.3 .30 .65 .95 1.25 1.55 1.90 2.20 2.50 2.85 3.15 6.6 .35 .65 1.00 1.30 1.65 2.00 2.30 2.65 2.95 3.30 6.9 .35 .70 1.05 1.40 1.70 2.05 2.40 2.75 3.10 3.45 7.2 .35 .70 1.10 1.45 1.80 2.15 2.50 2.90 3.25 3.60 7.5 .40 .75 1.10 1.50 1.85 2.25 2.60 3.00 3.35 3.75
550 50 1 12 1 29 1 43 1 57 2 09 2 21 2 33 2 44 2 55 000 52 1 14 1 1 146 2 00 2 13 2 25 2 37 2 49 3 00 6 10 53 1 16 1 34 1 49 2 03 2 17 2 29 2 41 2 53 3 05 6 10 53 1 16 1 44 1 49 2 03 2 17 2 9 2 41 2 53 3 05 6 20 - 55 1 1 3 1 52 2 07 2 9 2 33 2 46 2 58 3 10 6 30* 56 1 20* 1 3 1 55 2	7.8 .40 .80 1.15 1.55 1.95 2.35 2.75 3.10 3.50 3.90 8.1 .40 .80 1.20 1.60 2.00 2.45 2.85 3.25 3.65 4.05 8.4 .40 .85 1.25 1.70 2.10 2.50 2.95 3.35 3.80 4.20 8.7 .45 .85 1.30 1.75 2.15 2.60 3.05 3.50 3.90 4.35 9.0 .45 .90 1.35 1.80 2.25 2.70 3.15 3.60 4.05 4.50

Fig.13.7 **Table 5** in the *Canadian Tide and Current Tables* allows the calculations of the height of the tide at specific intermediate times, knowing the **duration** of a tide (the time between a High and a Low) and its amplitude or **range**, i.e. the difference in height between the Low and the High surrounding the time considered.

13.5.2 Calculation of the time when the tide will reach a given height

This type of calculation is essential when trying to sail in and out of harbours with a retaining wall to maintain the required level of water at low tide. This is frequently the case in all the small ports of the British Isles or along the shores of Normandy and Brittany.

The following example explains the method:

Example: Until what time can a boat with a 1.2 m draft go over a sand bar 1.0 m above vertical datum at the entrance of a small bay near Fulford Harbour in the morning of April 8, 2016? (Fig. 13.8)

The minimum height of water needed to allow the boat over the sand bar is 1.2 + 1.0 = 2.2 m above datum. A tide with a height of 2.2 m or more is therefore required to allow the boat to get over the bar. It is closest to the height of the nearest high tide (3.3 m at 05:57).

- Tide Duration: High Tide to Low Tide: 12:27 05:57 = 6 h 30 min (Fig. 13.8)
- **Tide Range:** 3.3 0.8 = 2.5 m;
- Height Difference: 3.3 2.2 = 1.1 m below high tide at the last possible moment for crossing.

We now look at Height Differences in Table 5a (Fig. 13.9, right side): Since our tide has a range of 2.5 m, we select the row with the closest range, 2.4 m down the Range column. And since our height difference is 1.1 m, we move horizontally to **1.10 m**, which is in **column I**.

We now continue with the Time Intervals table, in Table 5 (Fig. 13.9, left side). The duration of our tide is 6 h 30 min. Down the Duration column, we select the row for **6 h 30 min**. Moving horizontally to the column with the same name as in Table 5A, **column I**, we read a time interval of **3 h 03 min**.

This means that, 3 h 03 min before or after the high tide, the level of the tide is 1.1 m below the level at High Tide, i.e. 1.1 m less than 3.3 m. At any time in between, the tide will be more than 2.2 m, and we will be able to sail in or out of the harbour. The latest time for going over the sand bar is thus 05:57 + 03:03 = 09:00.

FULFORD HARBOUR 2016

		A	pril	-avı	il						May	-ma	i
Day	Time	Metres	Feet	jour	heure	mètre	s pieds	Day	Time	Metres	Feet	jour	heu
1 FR VE	0055 0656 0934	3.0 2.5 2.6 1.1	9.8 8.2 8.5	16 SA	0138 0811 1242 185	3.2 2.0 2.4	10.5 6.6 7.9	1 SU	0039 0720 1106 1742	3.2 2.1 2.3	10.5 6.9 7.5 3 0	16 мо	011 081 142 185
7 TH JE	0427 1043 1723 2247	3.2 1.1 3.0 1.6	10.5 3.6 9.8 5.2	22 FR VE	0424 1107 1825 2328	2.9 1.0 3.0 2.2	9.5 3.3 9.8 7.2	7 SA SA	0401 1101 1838 2324	3.3 0.3 3.2 2.3	10.8 1.0 10.5 7.5	22 SU DI	034 110 190 235
8 FR VE	0457 1127 1825 2336	3.3 0.8 3.1 1.9	10.8 2.6 10.2 6.2	23 SA SA	0 1 1	8	045 112	27	3.3 0.8	3	0.8 2.6	3 0 U	041 113 194
9 SA SA	0529 1213 1928	3.3 0.6 3.2	10.8 2.0 10.5	24 SU DI	0 0 1 1	FR VE	182 233		3.1 1.9		0.2 6.2	4 U A	004 044 121 202
10 	0031 0604	2.1 3.2	6.9 10.5	25	0055 0531	2.4 2.8	7.9 9.2	10	0139 0602	2.5 3.0	8.2 9.8	25	014 051

Fig. 13.8 In the morning of April 8, 2016, the time when it will be possible to sail over the sand bar is around the high tide of 05:57 (3.3 m).

TADLE FALLIFICUT DIFFEDENCES

TAB	LE 5: 1		ERV	ALS			ΓΑΒ	LE	5A:	HEIC	GHT	DIF	FER	ENC	ES	
Duration A B*	СД	E F	G	Н	J	Range	e A	B*	С	D	E	F	G	Н		J
hm hm hm	hm hm	hm hm	ı hm	hm	hm hm	m	m	m	m	m	m	m	m	m		m
1 00 09 12 1 10 10 14 1 20 11 16 1 30 13 18 1 40 14 20 1 50 16 23	15 18 18 21 20 24 23 27 25 30 28 32	23 26 27 30 30 33 33 37	28 32 36 40	26 31 35 39 44 48	28 30 38 35 37 40 42 45 47 50 51 55 56 100	0.8 0.6 0.9 1.2 1.5	.00 .05 .05 .05 .10	.05 .05 .10 .10 .15	.05 .10 .15 .20 .25	.05 .10 .20 .25 .30	.10 .15 .25 .30 .40	.10 .20 .25 .35 .45	.10 .20 .30 .40 .55	.10 .25 .35 .50 .60	.15 .25 .40 .55 .70	.15 .30 .45 .60 .75
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30 35 33 38 35 41 38 44 41 47 43 50	40 44 43 48 47 52 50 55 53 59	48 52 56 56 100 104	52 57 1 01 1 05 1 10 1 14	56 1 00 1 01 1 05 1 06 1 10 1 10 1 15 1 15 1 20 1 20 1 25	1 21 2.4 2.7 3.0	.10 .10 . 10 .15 .15	.20 .20 .25 .25 .30	.25 .30 .35 .40 .45	.35 .40 .50 .55 .60	.45 .55 .60 .70 .75	.55 .65 .70 .80 .90	.65 .75 . 85 .95 1.05	.70 .85 1.10 1.20	.80 .95 1.10 1.20 1.35	.90 1.05 1.20 1.35 1.50
3 00 26 37 3 10 27 39 3 20 29 41 3 30 30 43 3 40 32 45	46 53 48 56 51 59 53 1 02 56 1 05	1 03 1 10 1 07 1 14 1 10 1 17 1 13 1 2) 1 17 1 21 1 25 1 29	1 18 1 23 1 27 1 32 1 36	1 24 1 30 1 29 1 35 1 34 1 40 1 33 1 45 1 43 1 50	3.3 3.6 3.9 4.2 * 4.5	.15 .20 .20 .20 .25	.35 .35 .40 .40 * .45	.50 .55 .60 .65 .70	.65 .70 .80 .85 .90	.85 .90 1.00 1.05 1.10	1.00 1.10 1.15 1.25 1.35	1.15 1.25 1.35 1.45 1.55	1.30 1.45 1.55 1.70 1.80	1.50 1.60 1.75 1.90 2.00	1.65 1.80 1.95 2.10 2.25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58 1 08 1 01 1 11 1 03 1 14 1 06 1 17 1 08 1 20 1 11 1 23	1 17 1 25 1 20 1 29 1 23 1 32 1 27 1 36 1 30 1 40	5 1 33 9 1 37 2 1 41 5 1 45 9 1 49	1 40 1 45 1 49 1 53 1 58 2 02	1 43 1 55 1 52 2 00 1 57 2 05 2 02 2 10 2 06 2 15 2 11 2 20	4.8 5.1 5.4 5.7 6.0	.25 .25 .25 .30 .30	.50 .50 .55 .55 .60	.70 .75 .80 .85 .90	.95 1.00 1.10 1.15 1.20	1.20 1.25 1.35 1.40 1.50	1.45 1.55 1.60 1.70 1.80	1.70 1.80 1.90 2.00 2.10	1.90 2.05 2.15 2.30 2.40	2.15 2.30 2.45 2.55 2.70	2.40 2.55 2.70 2.85 3.00
540 49 1 10	1 13 1 26 1 16 1 29 1 18 1 32 1 21 1 34 1 24 1 37 1 26 1 40	5 1 37 1 47 1 40 1 5 1 43 1 5 1 47 1 58 1 50 2 02 1 53 2 05	1 57 2 01 2 05 2 09 2 2 13 5 2 17	2 06 2 11 2 15 2 19 2 24 2 28	2 16 2 25 2 20 2 30 2 25 2 35 2 30 2 40 2 34 2 45 2 39 2 50	6.3 6.6 6.9 7.2 7.5	.30 .35 .35 .35 .40	.65 .65 .70 .70 .75	.95 1.00 1.05 1.10 1.10	1.25 1.30 1.40 1.45 1.50	1.55 1.65 1.70 1.80 1.85	1.90 2.00 2.05 2.15 2.25	2.60	2.50 2.65 2.75 2.90 3.00	2.85 2.95 3.10 3.25 3.35	3.15 3.30 3.45 3.60 3.75
5 50 50 1 12 600 52 1 14 610 53 1 16 620 55 1 18 630 56 1 29 640 57 1 22 650 59 1 24 700 1 00 1 26 710 1 02 1 28	1 41 1 58 1 44 2 01 1 46 2 04	2 00 2 13 2 03 2 17 2 2 07 2 2 2 10 2 2 2 3 2 13 2 2 2 17 2 3	2 25 2 29 2 33 2 37 2 41 2 45 5 2 49	2 33 2 37 2 41 2 46 2 50 2 54 2 59 3 03 3 07	2 44 2 55 2 49 3 00 2 45 3 05 2 58 3 10 3 03 3 15 3 07 3 20 3 12 3 25 3 17 3 30 3 21 3 35	7.8 8.1 8.4 8.7 9.0	.40 .40 .45 .45	.80 .80 .85 .85 .90	1.15 1.20 1.25 1.30 1.35	1.55 1.60 1.70 1.75 1.80	1.95 2.00 2.10 2.15 2.25	2.35 2.45 2.50 2.60 2.70	2.75 2.85 2.95 3.05 3.15	3.10 3.25 3.35 3.50 3.60	3.50 3.65 3.80 3.90 4.05	3.90 4.05 4.20 4.35 4.50

Fig.13.9 **Table 5** of the *Canadian Tide and Current Tables* allows the calculations of times when the tides will reach certain heights, knowing the amplitude (**range**) of a tide and its **duration** (time between a High and a Low) around the time of day considered.

13.6 Tide estimations without the interpolation tables

Tide tables are usually available from various government or commercial sources, but navigators don't always have the interpolation tables which allow the calculation of intermediate tides (times and heights). There are several ways around it. The first two given here assume a tide of average tide duration, i.e. six hours. The third one gives more accurate values for any duration.

13.6.1 The rule of incremental 12ths

This method is the easiest when the heights of the tides are given in feet. During each of the first three hours of the tide, i.e. from a High or a Low to the mid-point, the changes in tide levels are assumed to be 1, 2 and 3 twelfths of the total tide range. During each of the following three hours, i.e. from the mid-point to the following Low or High, the changes in tide levels are assumed to be 3, 2 and 1 twelfths of the range. The height at any time between the High and Low is thus the sum of the twelfths of the range accumulated since the High or the Low tide used as a reference.

Example: A falling tide has a range of 11 feet (difference between the height of the High and the height of the following Low). By how much will the tide have dropped four hours after the High?

 $(1/12 + 2/12 + 3/12 + 3/12) \times 11' = 9/12 \times 11' = 99'/12 = 99$ inches, or 8.25'

13.6.2 The rule of 1/10, 1/4, 2/4, 3/4 and 9/10

This method is simple when the heights are given in meters. The change in tide levels are taken to be 1/10, 1/4, 2/4, 3/4 and 9/10 from hour to hour between the high and low tides. These fractions directly give the change in tide after one, two, three, four or five hours, without any need to add incremental heights for each hour. The results are the same as with the method outlined above for the tides two, three, and four hours after a High or a Low, but are slightly different (and more accurate) for tides measured one or five hours after a High or a Low.

Example: a rising tide has a range of 6 m. By how much will the tide have risen four hours after the Low?

 $3/4 \ge 6m = 4.5 m$

13.6.3 Quick tide-graphic

Hand-drawing a sine wave on a sheet of lined paper (preferably with vertical lines also) is easy. It allows the accurate calculation of any tide height at any time, knowing its High, its Low, and its duration. It is the most accurate way of estimating intermediate tides, and takes very little time (Fig. 13.10).

- 1. On a sheet, mark the **heights** of the High and Low tides on the vertical scale. It is easiest to use scales of 10 for measures in meters, and scales of 12 for measures in feet.
- 2. On the horizontal scale, mark the times of the High and Low tides. A scale of six makes it easier.
- 3. Calculate and plot the mid-point (mid heights and mid times).

- 4. Manually draw a rough sine wave between the High and Low tides. It should run through the mid-point.
- 5. Directly off the graph, read any height for any time, or any time for any height.

Example: Assume a tide with a High of 4.2 m at 12:45, and a Low of 0.8 m at 18:25 (Fig. 13.10). The mid-point is at (4.2 m + 0.8 m) / 2 = 2.5 m, at (12:45 + 18:25) / 2 = 15:35. A sine wave plotted quickly by hand can be drawn through these three points. With this plot, any tide between the high and low can be read instantly.

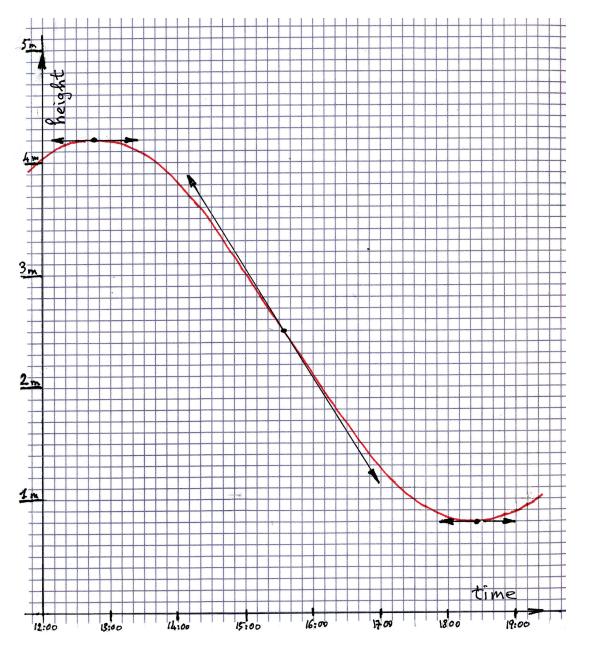


Fig. 13.10 Example of the hand-drawing of a tide knowing its High and Low.

13.7 Tides at secondary ports

The tides at secondary ports are not given in detail for every day of the year. Rather, the levels and times can be calculated by applying adjustments to times and levels at reference ports. These correction factors are given in special tables towards the back of each of the *Canadian Tide and Current Tables*. The example given below explains the calculations.

Example: How high is the highest tide at Pender Harbour in the afternoon of July 14, 2016, and when does it occur?

Reference Ports		page 129	Ports de Reference	
Secondary Ports				pages 13
Page numbers of Reference Port	Predictions	page 3	Les numero des pages	des Port de Référencep
Becher Bay	7030	Halfmoon Bay		Preedy Harbour
Bedwell Harbour	7350	Harmac		Prideaux Haven
Bellingham	7215	Heriot Bay		Redonda Bay
Blaine	7570	Hope Bay		Reservation Bay
Blind Bay	7865	Hornby Island		Roberts Creek
Blubber Bay	7875			
Boat Harbour	7480	Irvines Landing		Saanichton Bay
Brentwood Bay	7280			Saltery Bay
Buntzen Lake	7771	Ladysmith		Samuel Island, South Shore
<u></u>	0015	Little River		Samuel Island, North Shore
Channel Island		Lund		Sand Heads
Chemainus				SEATTLE
Clover Point		Maple Bay		Sheringham Point
Comox		Miners Bay		Sidney
Cowichan Bay		Mitlenatch Island		Silva Bay
Crescent Bay		Montague Harbour.		Skerry Bay
Crescent Beach		5		SOOKE
Crofton	7450	Nanaimo		Sooke Basin
		Nanoose Bay		Squamish
Deas Island (pages 136-137)		Narvaez Bay		Steveston (pages 136-137)
Deep Cove		New Westminster (p		Storm Bay
Degnen Bay		Northwest Bay	, ,	Surge Narrows
Denman Island		riorun est Buj min	////	Swartz Bay
Dionisio Point	7535	Oak Bay	7130	Shule Buy
		Okeover Inlet		Tsawwassen
Egmont	7842	Orford Bay		Tumbo Channel
Esquimalt	7110	Offord Bay		Twin Islands
Esquimalt Harbour	7109	Patricia Bay	7077	VANCOUVER
				VANCOUVER
False Bay	7982	Pender Harbour		VICTORIA
alse Creek	7710	POINT ATKINS		VICTORIA
inlayson Arm	7284			Waddington Harbour
Finnerty Cove	7140	Point No Point		Welcome Bay
Friday Harbor	7240	Porlier Pass		Whaler Bay
FULFORD HARBOUR	7330	Porpoise Bay		White Rock
		Port Angeles		
Ganges Harbour	7407	Port Moody		William Head
Georgina Point	7525	PORT RENFREW		Winchelsea Islands
Gibsons	7820	PORT TOWNSEN		Maladar Daling
Gorge Harbour	8037	Portage Inlet		Yokeko Point
		Powell River		
Names in capital letters indicate	reference ports	or current stations for	Les noms en majuscul	es indiquent les ports de référence ou stati

Step 1. Since the secondary ports are classified by number, we first look at the **Index**, p. 140 of Volume 5 of the *Canadian Tide and Current Table*, to obtain the number identifying the Pender Harbour tide station: **No. 7837** (Fig. 13.11).

Fig. 13.11 In *Canadian Tide and Current Tables*, the secondary tide stations are listed by station number. These are found in the Index Table, at the end of the manual. Here, Pender Harbour is Secondary Port No. 7837. **Step 2.** In the page for **Secondary Ports**, in Table 3 of the *Canadian Tide and Current Tables*, we look for the main harbour on which the tides in Pender Harbour are based:

For station No. 7837, tides are based on tides at **Point Atkinson**, (Fig. 13.12, bottom left):

			RENSEI	SNEMEN	TSETD	IFFÉREN	-0.300000000000000000000000000000000000	MAREES			1		
						DIFFERENCE	3		DIFFÉRENCE	3	RA	NGE	MEA
NDEX NO.	SECONDARY PORT	TIME ZONE	POS	ITION		HER HIGH W			WER LOW W		MAR	NAGE	WAT LEV
						E MER SUPÉ			E MER INFÉI				NIVE
NO	PORT SECONDAIRE	FUSEAU HORAIRE	LAT. N.	LONG. W.	TIME	MEAN TIDE	LARGE TIDE	TIME	MEAN TIDE	LARGE TIDE	MEAN TIDE	LARGE TIDE	MOY DE
		HUKAIKE	LAT. N.	LONG. O.	HEURE	MARÉE MOYENNE	GRANDE MARÉE	HEURE	MARÉE MOYENNE	GRANDE MARÉE	MARÉE MOYENNE	GRANDE MARÉE	L'EA
			0 1	0 1	hm	m	m	hm	m	m	m	m	m
	AREA RÉGION 3												
	S.E.VANCOUVER ISLAND												
	AND GULF ISLANDS				0	n/sur POII		SON, pag	ges 54-57				
7528	MINERS BAY	+ 8	48 51	123 18	+0 07	-0.7	-0.8	-0 07	-0.2	0.0	2.7	4.1	2.
7532	WHALER BAY	+ 8	48 53	123 20	+0 12	-0.5	-0.5	-0 01	-0.3	-0.2	3.0	4.6	2.
7535	DIONISIO POINT	+ 8	49 01	123 35	+0 05	-0.1	-0.2	+0 02	-0.1	0.0	3.1	4.7	3.
7542	VALDES ISLAND	+ 8	49 04	123 37	-0 04	-0.1	-0.1	-0 05	-0.1	+0.1	3.2	4.7	2.
7550	SILVA BAY	+ 8	49 09	123 42	+0 03	+0.1	+0.1	+0 02	+0.1	+0.1	3.2	4.9	3.
	AREA RÉGION 4												
	STRAIT OF GEORGIA MAINLAND SHORE												
	BOUNDARY BAY												
7570	BLAINE	+ 8	49 00	122 46	-0 11	-1.5	-1.6	-0 25	-1.1	-0.9	2.8	4.2	1.
7577	WHITE ROCK	+ 8	49 01	122 48	+0 05	-0.4	-0.4	-0 18	-0.1	-0.1	2.9	4.6	2.
7579	CRESCENT BEACH	+ 8	49 04	122 53	-0 01	-0.5	-0.6	-0 10	0.0	+0.2	2.7	4.1	2.
	FRASER DELTA												
7590	TSAWWASSEN	+ 8	49 00	123 08	+0 01	-0.3	-0.3	-0 13	0.0	+0.1	3.0	4.5	3.
7594	SAND HEADS	+ 8	49 06	123 18	+0 02	-0.1	-0.1	-0 14	+0.1	+0.2	3.0	4.6	3.
7710	BURRARD INLET FALSE CREEK	+ 8	49 16	123 07	+0 15	-0.1	0.0	+0 05	-0.1	-0.1	3.3	5.0	3.
//10	FALSE GREEK	+ 0	49 10	123 07	+015	-0.1	0.0	+0 05	-0.1	-0.1	5.5	5.0	3.
	FRASER RIVER				2	see/voir t				7			
						on/sur V	ANCOUVE	ER, page	es 50-53				
7755	PORT MOODY	+ 8	49 17	122 52	+0 28	0.0	+0.1	-0 05	0.0	0.0	3.3	5.0	3.
7765	DEEP COVE	+ 8	49 20	122 57	+0 26	0.0	+0.1	-0 04	0.0	-0.2	3.3	5.2	3.
7771	BUNTZEN LAKE	+ 8	49 22	122 52	+0 54	-0.1	-0.2	+0 14	0.0	0.0	3.2	4.7	3.
	HOWE SOUND					on/sur P(
7811	SQUAMISH	+ 8	49 42	123 09	+0 03	+0.1	+0.1	+0 00	0.0	0.0	3.3	5.0	3.
7820	GIBSONS	+ 8	49 24	123 30	-0 01	+0.1	+0.1	-0 04	+0.1	0.0	3.3	5.0	3.
	STRAIT OF GEORGIA												
7824	ROBERTS CREEK	+ 8	49 25	123 39	+0 01	0.0	0.0	-0 02	0.0	+0.1	3.2	4.8	3.
7830	HALFMOON BAY	+ 8	49 31	123 55	-0 04	+0.1	+0.1	-0 03	0.0	-0.1	3.3	5.1	3.
	MALASPINA STRAIT										i set		
7836	IRVINES LANDING	+ 8	49 38	124 03		+0.2	+0.2	+0 02	0.0	0.0	3.4	5.1	3.
7837	PENDER HARBOUR	+ 8	49 38	124 02	+0 06	+0.1	+0.2	+0 06	0.0	+0.1	3.3	5.0	3.

Fig.13.12 The Secondary Ports are listed at the end of *Canadian Tide and Current Tables*, by region first, and then by reference number. Here, Pender Harbour is part of the Malaspina Strait group in Area 4, under reference number 7837. The tides at Pender Harbour are based on those of Point Atkinson, which are partially reproduced in Fig. 13.13.

F	PO	INT	'AT	KI	NSO	ON	PST	Z+8				20	16									TID	E TAI	BLES
			J	uly-	juill	et					A	ugus	st-ao	oût				Se	epten	_	<u> </u>		-	
Ε	Day	Time	Metres	Feet	jour		mètres	pieds	Day	Time	Metres	-	jour	heure	mètres		Day	Time	Metres		jour	heure	mètres	-
	FR.	0127 0852 1604 2056	4.5 0.9 4.1 3.2	14.8 3.0 13.5 10.5	16 SA SA	0128 0911 1642 2130	4.1 1.2 4.1 3.4	13.5 3.9 13.5 11.2	1 MO LU	0256 1013 1733 2249	4.3 0.7 4.5 3.1	14.1 2.3 14.8 10.2	16 TU MA	0237 0959 1717 2233	4.0 1.0 4.3 3.2	13.1 3.3 14.1 10.5		0445 1120 1802 2359	4.1 1.2 4.4 2.5	13.5 3.9 14.4 8.2	16 FR VE	0421 1053 1724 2327	4.2 1.3 4.5 2.1	13.8 4.3 14.8 6.9
	SA SA	0216 0940 1659 2159	4.5 0.6 4.4 3.2	14.8 2.0 14.4 10.5		0212 0950 1720 2216	4.1 1.1 4.2 3.4	13.5 3.6 13.8 11.2	2 TU MA	0351 1058 1810 2337	4.3 0.7 4.5 3.0	14.1 2.3 14.8 9.8	17 WE ME	0330 1039 1746 2312	4.1 0.9 4.4 3.0	13.5 3.0 14.4 9.8	2 FR VE	0531 1156 1830	4.1 1.4 4.4	13.5 4.6 14.4	17 SA SA	0514 1135 1755	4.3 1.4 4.5	14.1 4.6 14.8
	SU	0306 1027 1747 2256	4.5 0.5 4.5 3.2	14.8 1.6 14.8 10.5	18 MO LU	0256 1027 1755 2257	4.1 0.9 4.3 3.4	13.5 3.0 14.1 11.2	3 WE ME	0442 1139 1845	4.2 0.8 4.5	13.8 2.6 14.8	18 TH JE	0421 1119 1815 2353	4.2 0.9 4.4 2.8	13.8 3.0 14.4 9.2	3 SA SA	0037 0616 1231 1857	2.3 4.0 1.7 4.3	7.5 13.1 5.6 14.1	18 SU DI	0010 0608 1217 1828	1.8 4.3 1.7 4.6	5.9 14.1 5.6 15.1
	10	0357 1112 1832 2349	4.4 0.4 4.6 3.2	14.4 1.3 15.1 10.5	19 TU MA		4.1 0.8 4.4 3.3	13.5 2.6 14.4 10.8	4 TH JE	0023 0531 1218 1917	2.9 4.1 0.9 4.5	9.5 13.5 3.0 14.8	19 FR VE	0511 1158 1845	4.2 0.9 4.5	13.8 3.0 14.8	4 SU DI	0114 0702 1306 1923	2.2 3.9 2.0 4.3	7.2 12.8 6.6 14.1	19 MO LU	0055 0705 1302 1903	1.5 4.3 2.0 4.6	4.9 14.1 6.6 15.1
	3	0447 1156 1914	4.3 0.5 4.7	14.1 1.6 15.4	20 WE ME	0426 1141 1858	4.2 0.7 4.5	13.8 2.3 14.8	5 FR VE	0109 0619 1255 1949	2.7 4.0 1.2 4.5	8.9 13.1 3.9 14.8	20 SA SA		2.5 4.2 1.1 4.6	8.2 13.8 3.6 15.1	5 MO LU	0151 0751 1341 1949	2.0 3.9 2.3 4.2	6.6 12.8 7.5 13.8	20 TU MA	0142 0807 1351 1942	1.3 4.3 2.4 4.5	4.3 14.1 7.9 14.8
	/E	0042 0537 1238 1953	3.1 4.2 0.6 4.7	10.2 13.8 2.0 15.4	21 TH JE	0018 0512 1219 1929	3.2 4.1 0.7 4.5	10.5 13.5 2.3 14.8	6 SA SA	0155 0708 1332 2019	2.6 3.8 1.5 4.5	8.5 12.5 4.9 14.8	21 SU DI		2.3 4.1 1.5 4.6	7.5 13.5 4.9 15.1	6 TU MA	0230 0846 1419 2016	1.9 3.8 2.6 4.1	6.2 12.5 8.5 13.5	21 WE ME	0233 0916 1448 2024	1.2 4.2 2.7 4.3	3.9 13.8 8.9 14.1
	н	0137 0627 1319 2032	3.0 4.0 0.9 4.6	9.8 13.1 3.0 15.1	22 FR VE	0103 0602 1257 2001	3.0 4.1 0.9 4.6	9.8 13.5 3.0 15.1	7 SU DI	0241 0801 1407 2049	2.4 3.7 1.9 4.4	7.9 12.1 6.2 14.4	22 MO LU		2.0 4.0 1.8 4.6	6.6 13.1 5.9 15.1	7 WE ME	0311 0951 1502 2046	1.9 3.7 2.9 4.0	6.2 12.1 9.5 13.1	22 TH JE	0327 1033 1558 2114	1.2 4.2 3.0 4.1	3.9 13.8 9.8 13.5
	FR	0232 0719 1359 2109	2.8 3.8 1.2 4.6	9.2 12.5 3.9 15.1	23 SA SA	0655	2.8 3.9 1.1 4.6	9.2 12.8 3.6 15.1	8 MO LU	0328 0902 1444 2119	2.3 3.5 2.3 4.3	7.5 11.5 7.5 14.1		0306 0910 1453 2106	1.7 3.9 2.3 4.5	5.6 12.8 7.5 14.8	8 TH JE	0356 1106 1557 2120	1.8 3.7 3.1 3.9	5.9 12.1 10.2 12.8	23 FR VE	0427 1153 1724 2216	1.2 4.2 3.1 3.9	3.9 13.8 10.2 12.8
	SA	0330 0817 1439 2145	2.7 3.5 1.6 4.5	8.9 11.5 5.2 14.8	24 SU DI	0244 0755 1420 2111		0 5	MĒ		11	60	J.	0402 L	16 1 V.Z	50		0448 24 14 04	1.8 3.8 3.3 3.8	5.9 12.5 10.8 12.5	24 SA SA	0532 1306 1855 2333	1.3 4.3 3.1 3.7	4.3 14.1 10.2 12.1
5	SU	0426 0925 1519 2220	2.5 3.3 2.0 4.4	8.2 10.8 6.6 14.4	25 MO LU				14	0	006		4.1		13.5			45 34 47 03	1.7 3.9 3.3 3.7	5.6 12.8 10.8 12.1	25 SU DI	0640 1409 2009	1.4 4.3 2.9	4.6 14.1 9.5
Ν	10	0521 1051 1604 2254	2.3 3.2 2.4 4.3	7.5 10.5 7.9 14.1		0439 1028 1600 2231			TH	0 I 1	748 506 925		1.0 3.1 3.1	7	5.2 12.1 10.8			46 30 00	1.7 4.0 3.3	5.6 13.1 10.8	26 MO LU	0058 0747 1459 2104	3.7 1.5 4.4 2.7	12.1 4.9 14.4 8.9
1		0614 1228 1657 2329	2.1 3.3 2.8 4.2	6.9 10.8 9.2 13.8		0539 1205 1705 2316			15	0	045		4.	1	13.5			13 45 15 51	3.7 1.5 4.1 3.1	12.1 4.9 13.5 10.2	27 TU MA	0213 0845 1540 2147	3.7 1.5 4.4 2.5	12.1 4.9 14.4 8.2
v	1.5	0703 1356 1807	1.9 3.4 3.1	6.2 11.2 10.2	28 TH JE	0639 1340 1822		10.2	SA	2011	831	1116	1 d	1 2104	Δ 6 3.1	10.2	MA	26 38 52 2131	3.7 1.4 4.2 3.0	12.1 4.6 13.8 9.8	28 WE ME	0314 0935 1614 2224	3.8 1.6 4.4 2.3	12.5 5.2 14.4 7.5
		0006 0748 1506 1925	4.1 1.6 3.7 3.3	5.2 12.1	FR	0006 0737 1459 1944	4.4 1.1 4.0 3.2	14.4 3.6 13.1 10.5	14 SU DI	0045 0833 1607 2108	3.9 1.3 4.1 3.4	12.8 4.3 13.5 11.2	29 MO LU	0159 0908 1623 2156	4.0 1.1 4.4 3.0	13.1 3.6 14.4 9.8	14 WE ME	0926	3.9 1.3 4.3 2.7	12.8 4.3 14.1 8.9	29 TH JE	0406 1019 1644 2258	4.0 1.7 4.3 2.1	13.1 5.6 14.1 6.9
	FR	0045 0831 1559 2034		13.5 4.6 12.8 11.2	SA	0101 0832 1600 2056	4.3 0.9 4.2 3.3	14.1 3.0 13.8 10.8	MO	0142 0917 1644 2153	4.0 1.2 4.2 3.3	13.1 3.9 13.8 10.8		0302 0957 1701 2241	4.0 1.1 4.4 2.8	13.1 3.6 14.4 9.2	TH	0328 1011 1654 2247	4.1 1.2 4.4 2.5	13.5 3.9 14.4 8.2	FR	0452 1058 1711 2331	4.0 1.9 4.3 1.9	13.1 6.2 14.1 6.2
					SU	0159 0925 1650 2157		14.1 2.6 14.4 10.5					WE	0356 1040 1733 2321	4.1 1.1 4.4 2.6	13.5 3.6 14.4 8.5								

Step 3. We go to the Point Atkinson page for July 14, 2016, (Fig. 13.13), and find that the height and time of the highest tide in the afternoon is 3.7 m at 16:06 (15:06 + 01:00 for Pacific Daylight Time).

Fig. 13.13 The tides at Pender Harbour are based on the ones in Point Atkinson. Here, on July 14, 2016, blown up on the center of the image, we have the information on the Higher high, Lower low, High and Low tides in Point Atkinson: the times are given in PST, and the heights in **metres** and feet.

The highest tide at Pender Harbour will be similar to the highest tide at Point Atkinson, with slight adjustments to the time and height. The adjustments are given on the same Table 3 of the *Canadian Tide and Current Table* which we just used for the **Secondary Ports**. (Fig. 13.14)

Step 4. On the row for Secondary Port No. 7837 Pender Harbour, we find that the adjustment for the time of a high tide is + **0:06**, which means that the high tide in Pender Harbour occurs 0 h and 06 min AFTER the high tide in Point Atkinson (i.e. after 01:06 PDT, the highest tide of the day).

SECC	ONDARY PORTS	I			ION AND	BLE 3 TIDAL DI IFFÉREN				RTS	SECO	NDAI	RES
INDEX NO.	SECONDARY PORT	TIME ZONE	POS	ITION		DIFFERENCES HER HIGH W E MER SUPÉ	ATER		DIFFÉRENCE WER LOW W.	ATER		NGE NAGE	MEAN WATER LEVEL
NO D'INDEX	PORT SECONDAIRE	FUSEAU HORAIRE	LAT. N. LAT. N.	LONG. W. LONG. O.	TIME HEURE	MEAN TIDE MARÉE MOYENNE	LARGE TIDE GRANDE MARÉE	TIME HEURE	MEAN TIDE MARÉE MOYENNE	LARGE TIDE GRANDE MARÉE	MEAN TIDE MARÉE MOYENNE	LARGE TIDE GRANDE MARÉE	NIVEAU MOYEN DE L'EAU
		+ 8	0 I	0 1	hm	m	m	hm	m	m -0.1	m 3.5	m	m
	MALASPINA STRAIT					on/sur PC	DINT ATK	NSON,	pages 54	-57	1.181	11	
7836	IRVINES LANDING	+ 8	49 38	124 03	+0 00	+0.2	+0.2	+0 02	0.0	0.0	3.4	5.1	3.2
7837	PENDER HARBOUR	+ 8	49 38	124 02	+0 06	+0.1	+0.2	+0 06	0.0	+0.1	3.3	5.0	3.2
										×.			

Fig. 13.14 The adjustments to make to the Point Atkinson tides in order to get those in Pender Harbour are given in this table for the Higher high water (also applicable to High water) and the Lower low water (or Low water). The adjustments for the height of the tides depend on whether the high or low water is normal (**Mean**) or exceptional (**Large**). This is shown in Table 2 (Fig. 13.15). The time adjustment is valid either for all high tides or all low tides.

On the same row, we see that two cases need to be considered: If the high tide at Point Atkinson (Higher high water) is a normal high tide, i.e. a "**Mean tide**", the adjustment in **height** for Pender Harbour is +0.1 m: the high tide in Pender Harbour is 0.1 m higher than at Point Atkinson. If the high tide in Pender Harbour is particularly high i.e., a "**Large tide**", then the adjustment is +0.2 m: the large high tides in Pender Harbour are +0.2 m higher than the ones at Point Atkinson. Is the 4.1 m high tide at Point Atkinson on July 14 a Mean tide or a Large tide? We need to look at Table 2 of the *Canadian Tide and Current Table* in the section Reference Ports (Fig. 13.15).

EFERENCE PORTS		TAB	LE 2		PORT	IS DE RÉF	ÉRENC
	TIDAL HEIGHT EURS DE MAF						
THO T		the second se	HAUTEURS	JINOTENDE	RECORDED	EXTREMES	
REFERENCE PORT	HIGHER HIG PLEINE MER S			OW WATER INFÉRIEURE		NREGISTRÉS	MEAN WATER LEVEL
PORT DE RÉFÉRENCE	MEAN TIDE MARÉE MOYENNE	LARGE TIDE GRANDE MARÉE	MEAN TIDE MARÉE MOYENNE	LARGE TIDE GRANDE MARÉE	HIGHEST HIGH WATER EXTRÊME DE PLEINE MER	LOWEST LOW WATER EXTRÊME DE BASSE MER	NIVEAU MOYEN DE L'EAU
	m	m	m	m	m	m	m
PORT RENFREW	3.0	3.7	0.8	0.0	4.3	-0.2	1.9
SOOKE	2.8	3.4	0.9	0.3	3.9	-0.2	1.9
VICTORIA	2.5	3.4	0.7	0.1	3.8	-0.5	1.9
PORT TOWNSEND	2.5	3.0	0.0	-0.7			1.6
SEATTLE	3.4	4.2	-0.1	-1.3			2.0
FULFORD HARBOUR	3.3	3.7	0.9	-0.1	4.4	-0.5	2.3
VANCOUVER	4.5	5.0	1.2	0.1	5.6	-0.3	3.1
POINT ATKINSON	4.5	5.0	1.2	0.1	5.6	-0.4	3.1

Step 5. In order to determine if this particular high tide at Point Atkinson is **mean** or **large**, we need to check on Table 2.

Fig.13.15 This table tells us what a normal (Mean) tide is at Point Atkinson, and what an exceptional (Large) tide is. This will tell us what adjustments to make to the heights of the tides at the secondary port of Pender Harbour.

From Table 2, we see that, for Point Atkinson, a **Mean** high tide is 4.5 m, while a **Large** high tide is 5.0 m. On July 14, 2016, our tide (4.1 m) is closest to a mean high tide (4.5 m). We therefore choose the height adjustment for a mean high tide: + 0.1 m. (Fig. 13.14, Table 3, Higher High Water, Mean Tide)

We can now make the time and height adjustments, which are those for a mean high tide:

- Change in time: + 0 h 06 min. Pender Harbour highest tide occurs at 01:06 + 00:06 = 01:12
- Change in height: + 0.1 m. Pender Harbour highest tide is 4.1 + 0.1 = 4.2 m