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1 .1 Traditional Coastal Navigation

The method used depends on whether we can take a sight off several 

land marks at a given moment (fig. 1.1), or whether we are restrained 

to a single landmark and must use it to plot running fixes (fig. 1.2).
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Fig. 1.1  Traditional fix, using three bearings on 
three landmarks.
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Fig 1.2  Running Fix (Advanced Line of Position),  
using two bearings on a single landmark. 
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Fig 1.3  A fixed observer can directly use two 
or three lines (circles) of position from different 
celestial objects at the same time.
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Fig 1.4  A fixed observer can directly use two lines 
(circles) of position from the same object at different times.

Fig. 1.5  A moving observer needs to advance the 
first line (circle) of position by the distance traveled 
between the two observations, thus obtaining a 
Running Fix.
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1 .2 Celestial Navigation

The same techniques apply in Celestial Navigation; in this case, the 

Lines Of Position, or LOPs, are circles of usually very large diameter 

centered on the Geographic Position of the sun (see Section 1.3).

Sometimes, we can take concurrent sights on several stars and/or 

planets and obtain our position at the intersection of two or three 

LOPs determined by the angle at which we see the celestial bodies 

above the horizon (fig. 1.3). At other times, we are restricted to the 

use of a single body, for instance the sun or the moon, in which case 

we need to take several sights at different times of the day (fig. 1.4). 

If the boat has moved between sights of a single celestial body, we 

must advance the first LOP by the direction and distance traveled by 

the boat between the sights in order to obtain a running fix (fig. 1.5).

Celestial Navigation is based on principles derived from Coastal Navigation.
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1 .3  Determining the Geographic Position 
of a Celestial Body

The Geographic Position (GP) of a celestial body at each 

instant is the point on earth over which it is at that moment 

(fig. 1.3). 

Publications called Nautical Almanacs give, for each hour 

of each day of the year, the exact coordinates of the GP of the 

sun, moon, major planets, and brightest stars on the celestial 

sphere. A straight interpolation allows the calculation of 

the coordinates of the main celestial bodies at any time in 

between (fig. 1.6).

In the Almanac, the coordinates of celestial objects are 

given in terms of Greenwich Hour Angle (or GHA), the 

equivalent of a longitude; and Declination (or Dec), the 

equivalent of a latitude. The coordinates of the celestial 

bodies on the celestial sphere, in degrees of Greenwich Hour 

Angle and Declination, are the same as the coordinates of 

their GP on the surface of the earth. The only difference is 

that GHA is counted, very logically, from the Greenwich Meridian 

towards the west, all the way around the earth up to 360°; a longitude, 

by contrast, is either west or east of the Greenwich Meridian, to a 

maximum of 180° (fig. 1.6). 

For instance, the 2003 Almanac tells us that, on the 3rd of July of 

that year, at precisely 16:00 UTC (Greenwich time), the sun Dec was 

22° 57.5' N, and its GHA was 058° 57.2' (fig. 1.7; full table in Appendix 

2, Almanac daily table for July 3, 4 and 5, p. A2-9). This means that, 

at this precise moment, the sun was exactly above a point on earth 

located at 22° 57.5' of Latitude North, and 058° 57.2' of Longitude 

West. This is in the West Atlantic near the Tropic of Cancer, some 

1,000 km NE of Puerto Rico. In other words, if our boat had been at 

that spot, i.e. at the sun’s GP, we would have seen the sun exactly 

overhead, at our zenith, i.e. at an altitude of 90° above the horizon. 

The next day, in the morning of July 4 at 02:00 UTC, the sun’s 

GHA was 208° 56.1' (Appendix 2, p. A2-9), and returning towards 

Greenwich from the east. The longitude of its GP was then 360° 

00.0' − 208° 56.1' = 151° 03.9' E. 

Fig. 1.6  These celestial coordinates are  
equivalent to the ones on the surface of the earth 
(Lat. 22º 57.5' N, Long. 58º57.2' W).
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Fig. 1.7  The Almanac provides the celestial 
coordinates of the main Celestial Objects. For 
instance, on July 3, at 16:00 UTC time, Dec for  
the sun = 22º 57.5' N, and GHA = 058º 57.2'.
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The same type of information is available for each of the celestial 

objects listed in the Almanac: the sun, the moon, the four main 

planets, and the 57 stars used for navigation. If our boat had been, 

instead, in the Pacific Ocean off the shores of Vancouver Island, 

we would have seen the sun at a lower angle H above the horizon. 

1 .4  Plotting the Circles of Position  
around the GP

Since the earth is approximately spherical, we can tell how far we 

are from the Geographical Position or GP of a celestial body, 

i.e. from the point on earth where the body appears to be directly 

overhead at the time of the sight. The altitude H (for Hauteur: 

the notations are of French origin) of the celestial object over the 

horizon determines how far away we are from its GP. The further 

away our boat is from the sun GP at that particular time, the smaller 

its altitude, i.e. the angle of the sun over the horizon (fig. 1.8).

If we measure this angle H with a sextant, it is relatively simple to 

calculate how far away we are from the GP of the sun: this distance 

is the radius of our Circle of Position. On charts large enough to 

cover most of the Pacific Ocean, and to include both our boat 

position and the sun’s GP, we could draw a circle around the sun’s 

GP with a radius corresponding to our calculated distance from the 

GP. This would give us a first circle of position: our boat would be 

somewhere along the circle, centered on the GP, from which the sun 

could be seen at this angle H above the horizon. Subsequent sights 

of the sun would give us our position at the intersection of two or 

three circles of position.

The drawback of this method is that it is not very precise: a chart 

on which we could plot both the boat and the GP of the sun would 

necessarily be of such small scale, covering huge areas of the earth, 

that our position would be quite approximate. If we were sailing 

back from Hawaii to Victoria, for instance, the intersection of two 

or three circles of position would probably not be precise enough to 

tell us whether we were approaching the southern part of Vancouver 

Island or the Northern part of the State of Washington.

Fig. 1.8  Circles of Position for various altitudes  
H of a celestial object over the horizon. The further 
away the observer is from the GP, the lower the 
object’s altitude over the horizon.
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In this manual, we will treat the 
Almanac coordinates of the celestial 
bodies, and in particular of the sun, 
as if they were the geographical 
coordinates of those bodies’ GPs on 
the surface of the earth. This greatly 
simplifies the comprehension of the 
method. We simply replace the centers 
of the stars and planets by small 
lights on the surface of the earth, just 
underneath each celestial body. For an 
observer at the center of the earth, from 
which all measurements are made, the 
picture of the sky is the same. 

We also treat the apparent movements 
of the celestial bodies across the 
celestial sphere as if they were real. 
In other words, we use the Ptolemy 
model of the universe, and assume 
that the earth is at its center. Since all 
movements are relative, the model that 
we use to represent the various orbits 
does not change the calculations or the 
results, but the Ptolemy model makes 
it considerably simpler to imagine the 
movements. For instance, we will be 
referring to the revolution of the sun 
around the earth, when this movement 
is only apparent.
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1 .5 The Marcq Saint Hilaire Solution

In 1874, an astute French naval commander, Adolph Laurent Anatole Marcq de Blond 

de Saint Hilaire, thought of a way to avoid the problem of drawing circles of position 

centered on the sun’s GP several thousand miles away. Instead of trying to draw the 

whole circle of position, or at least the relevant sector of this circle, he had the idea of 

assuming a position for the boat from Ded Reckoning (ded meaning deduced position, 

using calculations from heading, speed and time), and calculating at what angle above 

the horizon, and in what direction, the sun or other celestial bodies would be when 

seen from this assumed position.

A navigator would then be able to compare this calculated altitude of the sun, Hc, 

with Ho, the altitude observed with the sextant; this would tell him or her how far 

off the boat was from its assumed position, either towards the sun or away from it. In 

other words, Marcq Saint Hilaire used a differential method, measuring and plotting 

small differences between calculated and measured angles, rather than an absolute 

method, trying to draw a sector of the huge circle of position centered on the GP of 

the sun (or any other celestial body).

1 .6 Sight Reduction Tables

The Marcq Saint Hilaire method requires the use of Sight Reduction tables in order to 

calculate the altitude of the sun at the assumed position. The simplest ones to use are 

those published by the National Imagery and Mapping Agency (U.S.), newly referred 

to as Pub. No. 249 in North America, and AP 3270 in the UK. They were originally 

prepared for air navigation in the early sixties by the Hydrographic Office, which 

explains that they are still often known as H.O. 249.

Once the coordinates of the GP of a celestial object are calculated from the Almanac, 

by interpolation to the nearest second for the precise time of the sight, the Sight 

Reduction Tables in Pub. No. 249 allow the calculation of the angle of that object 

above the horizon, and its bearing (direction) as seen from any assumed position on 

earth. The Sight Reduction Tables cover a sector of the celestial sphere extending 

from 30° N to 30° S of the equator, which includes the sun, the moon, the planets, and 

some of the main stars. 

Other Sight Reduction tables, such as H.O. 229, are specifically designed for marine 

navigators; they cover the whole celestial sphere but are considerably bulkier. Together 

with the concise Sight Reduction Tables at the end of the Nautical Almanac, however, 

they are traditionally perceived as more difficult to use than those in Pub. No. 249.
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1 .7 Angle at the Center of the Earth

There is a direct relationship between the altitude of a celestial 

object above the horizon (H) and the corresponding angle at the 

center of the earth (90° − H, referred to as the Zenith Distance 

ZD; see fig. 1.9). This angle at the center of the earth determines 

the distance, on the surface of the earth, between the Geographical 

Position of the celestial body, GP, and the boat. Our Line of Position 

is this circle (fig. 1.10). The original definition of the Nautical Mile 

was that one minute of angle at the center of the earth marked an 

arc of one nautical mile on the surface. The new definition relates 

the nautical mile to the metric system: 1 NM = 1,852 m.

1 .7 .1 Example
Captain Cook took a sight on the sun, on June 21, 1769. From his 

Nautical Almanac, he knew that, at the time of the sight, the sun was 

over a point just east of Mazatlan, at Lat. 23° N, Long. 105° W. With 

his sextant, he measured the altitude of the sun as Ho = 30° above 

the horizon. What was the radius of the Circle of Position, centered 

on the sun’s Geographic Position, on which his boat was located?

Answer: The Zenith Distance is 90° − 30° = 60°.

His Circle of Position, centered on the sun’s GP in Mexico, has a 

radius of 60° x (60' per °) = 3,600 NM.

1 .8  Calculation of the length of a segment of 
Great Circle

The distance between two points on the surface of the earth can 

be calculated directly without a sextant. While there are several 

formulae to determine the length of an arc of Great Circle between 

two points of coordinates Lat1, Long1 and Lat2, Long2, the most 

traditional one is:
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Fig. 1.9 The angle at the Center of the Earth  
(90° − H) is equal to the Zenith Distance, i.e. 90° 
minus the altitude (H) of the sun above the horizon. 
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Fig. 1.10 The angle at the Center of the Earth  
(90° − H) allows drawing a Circle of Position,  
at least in theory.

D (in NM) = ArcCos [(Sin Lat1 x Sin Lat2) + (Cos Lat1 x Cos Lat2 x Cos (Long2 − Long1))] x 60

In this formula, the angles of Lat. and Long. are in radians. Degrees 

and minutes of angle can be converted into radians from the relation 

1° = ( π / 180) radians = 3.1416 / 180 = 0.017 radian. Latitudes south 

and longitudes west are identified with a minus sign. The notation 

ArcCos is often represented as Cos−1
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Lat1 = 23° N =  0.401426 radians;  Sin Lat1 = Sin    0.401426 =   0.390731;  Cos Lat1 = 0.920505

Lat2 = 18° S = −0.314159 radians;  Sin Lat2 = Sin − 0.314159 = −0.309017;  Cos Lat2 = 0.951057

Long2 − Long1 = 150° − 105° = 45° = 0.785398 radians;   Cos (Long2 − Long1) = 0.707107

D (in NM) = ArcCos [(0.390731 x (−0.309017)) + (0.920505 x 0.951057 x 0.707107)] x 60

 = ArcCos [−0.120743 + 0.619039] x 60

 = ArcCos [0.498296] x 60

 =  1.049164 radian x 60

 = 60° x 60 = 3,600 NM

In our example, we know from his diary that Captain Cook was near Tahiti, at Lat. 

18° S, Long. 150° W. The calculations for the distance between his boat and the sun’s 

GP look like this: 

1 .9  Navigation by latitude and the problem of longitudes

Long before Almanacs and Sight Reduction tables were produced, and even before the 

sextant had been invented, mariners used to sail across seas and oceans by following a 

constant parallel of latitude. They could do this simply by checking the sun at noon every 

day, when it is highest over the horizon, or the polar star at dawn or dusk. Christopher 

Columbus and Magellan, for instance, used this method to navigate. The method is 

still used today (see Chapter 6, Latitude by Noon Sight, and Chapter 8, Approximate 

Latitude from Polaris).

The determination of one’s longitude around the earth, however, had always eluded 

navigators until fairly recently. One naturally tries to correlate the longitude of the boat 

with the apparent movement of the sun or other celestial bodies around the earth, and 

this requires a very accurate measure of time.

Since the sun appears to turn around the earth in a day (360° in 24 hours, or 15° per 

hour), we could tell our position away from a reference meridian by noting the exact 

moment at which the sun crosses the meridian of the boat: the time which the sun 

takes to travel from the reference meridian to the meridian of the boat, at 15° per hour 

westward, determines our longitude. The meridian of Greenwich was selected as the 

international reference meridian in 1884.

For example, if the sun is highest over the meridian of our boat at 13:00 UTC (1:00 p.m. 

Greenwich time) on a day when it crossed the meridian of Greenwich at 12:00, we are 

one hour or 15° west of this reference meridian. If the sun is highest over our boat at 

4:20 p.m., we are (4 + 1/3 h) x 15°/ h = 65° west of the meridian of Greenwich. 

Navigators have been able to keep a precise track of time since the invention of the 

chronometer at the end of the eighteenth century. Chapter 3 explains how time is 

determined and measured, thus enabling us to determine our longitude.


